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Letting 4. equal the vector amplitude of the  for the second shunt stub
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Substituting (16) into (15) and discarding all
second-order terms involving ;L and oo, it
can be shown that
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III. “RAT RACE” HYBRID RING

The “rat race” hybrid ring (see Fig. 2)
uses three quarter-wave (i.e., \/4) transmis-
sion lines and one three-quarter-wave (i.e.,
2)\) transmission line. The same method of
analysis previously used for the lossy square
hybrid is directly applicable.

Fig. 2

“Rat race” hybrid ring.

Since the first shunt stub of the bisected
network is an eighth-wavelength long, (7),
(8), (9), (10), and (11) are applicable when

=1/+/2 and ez =c. Then
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Letting Y;=1/+/2 and substituting (5) into
(21),
Yors = 3al — j 22)

now

Yoro = (23)
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Letting Yy=1/+/2 and substituting (5) into
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For small dissipation,
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then
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The ABCD matrix for the ‘“‘rat race” hybrid
ring can be evaluated using (20), (22), and
(25) for Y1,4 and Yz, .. Upon determining the
vector amplitude of the signal emerging from
port 3 and discarding all second-order terms
involving oL, it can be shown that
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IV. NUMERICAL RESULTS

I =20 loglo[

The unloaded Q of a resonant length of
lossy transmission line can be related con-
veniently to the attenuation per unit length
when the dissipation is small:*

@7

where A =wavelength, Rearranging terms and
letting L=2\/4, it can be shown that

(28)

4 B. C, Jordan, Electromagnetic Waves and Radiating
Systems. Englewood Cliffs, N. J.: Prentice-Hall, 1950,
pp. 236-239.
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Using (19), (26), and (28), theoretical hybrid
isolations have been calculated for Q’s of 10,
100, 1000, and «. These numerical results
are tabulated below:

[s] L (SanJare (“RatI Race”
Hybrid) Hybrid Ring)
10 0.0785 23.3dB 33.7dB
100 0.00785 40.8 dB 51.4 dB
1000 | 0.000785 60.5dB 71.1dB
o 0 dB dB

(Note: an =az =« is assumed for the square hybrid.)

For the square hybrid when ay=az=«

2 + 9.66aL
I = 20logy, | 22202
081 | TS Adal
0.83
= 20 logio [ ] (29)
oL,

Upon comparing (26) and (29), it can be seen
that as «L approaches zero, the isolation of
the “rat race” hybrid ring will be 10.6 dB
greater than the isolation of the square hybrid
for the same «L in both hybrids. Such a per-
formance advantage is not unexpected since
the bandwidth of the square hybrid is less
than that of the “rat race” hybrid ring.! Iso-
lation in hybrid circuits is similar to peak
rejection in a band-reject filter. As filter
bandwidths become wider, the same amount
of incidental dissipation (i.e., same resonator
unloaded Q) results in higher peak rejection.
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A Stepped Mode Transducer Using
Homogeneous Waveguides

Abstract—A  rectangular to cylindrical
waveguide transducer is described which couples
the dominant rectangular (TE;;) and dominant
cylindrical (TE;;°) modes. The maximum volt-
age reflection coefficient remains less than
0.025 over the design bandwidth. Symmetry
considerations substantiated by moding tests
show the transducer to be higher-order mode
free. Previous work is reviewed, the design
method discussed, and experimental data shown,

Broadband rectangular to dominant mode
cylindrical waveguide transducers are com-
mon to several devices in the microwave re-
gion, most notable of which is perhaps the
precision rotary vane attenuator. Frequently
such transducers are realized by construction
of a taper section several wavelengths in size.
As a result of a recent study of the dominant
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mode cutoff wavelengths of truncated cross-
section cylindrical waveguide, Pyle [1] has
shown the conditions necessary to realize a
transition of variable cross section but con-
stant cutoff wavelength between the wave-
guides. Pyle’s conditions may be applied
to the tapered line approach; the resulting
structure would be classed homogeneous
since the guide wavelength would be inde-
pendent of position along the direction of
propagation.

Stuchly and Kraszewski [2] have recently
reported a stepped transducer based on a
series of E-plane truncated cylindrical wave-
guide quarter-wave sections with a single
H-plane step to rectangular cross section.
The design basis was equality of cylindrical
and rectangular waveguide cutoft wavelengths
yielding an overall frequency independent im-
pedance transformation ratio. Because the
cutoff wavelength of E-plane truncated cross-
section cylindrical waveguide depends upon
the degree of truncation [3], quarter-wave
sections of this type introduce frequency
dependent impedance ratios thereby causing
this structure to be classed inhomogeneous.

A completely homogeneous stepped solu-
tion is possible by retaining the cutoff wave-
length equality between the cylindrical and
rectangular waveguides as well as among the
quarter-wave transformer sections by apply-
ing Pyle’s conditions for constant cutoff wave-
length at selected impedance levels. Pyle’s
conditions lead to simultaneous E- and H-
plane truncations of the cylindrical waveguide;
this approach not only avoids possible prob-
lems of frequency dependent impedance ratios
but also distributes the H-plane step among
the junctions.

Avoiding the question of a consistent
solution for the characteristic impedance of
E- and H-plane truncated cylindrical wave-
guide, it was assumed, since \¢ is constant for
all sections, that characteristic impedance

b
a

where a, b are defined in Fig. 1. Note that,
in the limits, b/a=1/2, b=a=2r, (1) is
rigorously consistent with the power-voltage
definitions of characteristic impedance for
dominant moded rectangular and cylindrical
waveguides [4]. The approximation made
here is that (1) applies for the intermediate
E- and H-plane truncated sections, 1/2<b/a
<l

Young’s tables for homogeneous quarter-
wave transformer [5] were used to obtain
characteristic impedance levels for a selected
bandwidth w=0.80 and an impedance trans-
formation ratio of 2.000 with N=4 sections.
Table 1 lists the impedance levels and 5/a
ratios which simultaneously satisfy (1) and
the cutoff wavelength conditions [1]. Junc-
tion susceptance length corrections were ob-
tained for the E- and H-planes independently
similar to Young’s outline [6] and are shown
in Table I.

The completed transducer is shown in Fig.
2. In order to test the design assumptions
under controlled conditions and to insure a
high degree of symmetry, tolerances better
than 1073, were held.

Transducer VSWR was obtained in WR-
430 slotted section and sliding cylindrical ter-
mination with spot checks using a high ac-
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Fig. 1. E-and H-plane truncated cylindrical waveguide.

Fig. 2. Homogeneous waveguide transducer.
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Fig. 3. Reflection coefficient, WR-430-—5.040 inch diameter transducer.
TABLE 1
ImMPEDANCE LEVELS, CROSS SECTIONS AND LENGTHS
1700—2600 MHz TRANSDUCER
Normalized Capacitive Inductive “{er%;ttl‘fd
. Charac- b a Junction Junction >
Section teristic Type Inches Inches Correction | Correction ir;:)k/xzs
Impedance Inches Inches —1.844 inch
Zy 1.00000 Rectangular 2.150 4.300 — — —
A 1.06726 | Rectangular 2.295 4.300 —0.073 0.000 1.771
Z2 1.26420 | Rectangular 2.720 4,303 —0.112 +0.027 1.732
Z3 1.58203 | Truncated, 2r =5.040" 3.468 4.384 —0.091 -+0.078 1.781
Zy 1.87396 | Truncated, 2 =5.040" 4.346 4.638 —0.003 -+0.029 1.841
Zs 2.00000 | Cylindrical, 2r =5.040" 5.040 5.040 — — —

curacy tuned reflectometer. Three experiments
were run to assess optimum junction suscep-
tance length corrections. The first run used
length corrections consisting of the algebraic
sum of the E- and H-plane length corrections
listed in Table 1. A final run consisted of
E-plane length corrections only. An inter-
mediate run, based on weighting the length
corrections according to E- and H-plane sus-
ceptance magnitudes gave best performance.
The weighted lengths are listed in Table I and
the results shown in Fig. 3. Predicted per-
formance based on absence of frequency de-
pendent junction susceptances is a Tcheby-
scheff ripple voltage reflection coefficient
maximum of 0.008 over 1680-2620 MHz. The
results show a mean reflection coefficient ap-
proximately twice theoretical with slight
bandwidth compression.

No evidence of possible TM¢° nor TE:°

moding was detected with the transducer
exciting a mode sensitive suppressed sidelobe
conical feedhorn. The moding detector was
the space radiation patterns of the feedhorn.
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An Approximate Formula for Calculat-
ing Z, of a Symmetric Strip Line

The equations available to determine the
characteristic impedance of a symmetric strip
line (Fig. 1) to high accuracy are difficult to
utilize without a computer [1],[2]. Other
less accurate equations which are easier to
apply have been developed, and the one most
frequently quoted has been given by Cohn [3]:

94.15/+/ &

T e
where
Co=1 —2T/D1n 1 —1T/D +1]
-5
In [Tfi“lf/ﬁ)'z‘ - 1]. @

Equation (1) was stated by Cohn to be
applicable over the range W/(D—T7)>0.35
and 7/D<0.25, with a maximum error of
approximately 1 percent at the lower limit of
W/D. Good agreement between computed
and measured values of Z, has also been ob-
tained for values of W/D and T/D outside
Cohn’s stated limits [4].

Chen [5] has supplied another equation
to determine Z, for a symmetric strip line:

94.15// &

2o = [W/(D — T) + Cufx @)
where
2D — T
Co=pz Tln[
T@2D — T)
+1n [(D s @

Although not immediately obvious, and
apparently not realized by some [4], (2)
and (4) are identical. By substituting x=1
/A-T/D),
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Fig. 1. Cross section of symmetric slab line. magnetic field intensity.
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Fig. 4. Variation of correction factor with W/D ratio.
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From (4),
~ 2—T/D
Co = 1—T/D1n|: T/D :I
(T/Dy2—T/D)
+ln [ (1 = T/Dy

Now T/D=1—1/x and 2—T/D=1+4+1/x.

[1 +1/z
=zln »——]
1—1/z
+In [(1 — 1/2)(1 + 1/2)2?]
(x + 1)”“]
=In|——F"—

(x — 1)=t
Hence, Co=C, and (1)+(4) can be combined
together in the following expression:

94.15

Zo= W 1 @+
\/e,[ﬁ.ﬁ;ln;mﬂ

6))

However, (5) is not a particularly easy
one to handle, and a simpler although less
comprehensive one has been developed, ac-
curate to better than 1.2 percent of (5) for
W/D>1.0, and to within 5 percent for
W/D2>0.75, providing that in both cases
T/DZ0.2. It is

z=Jem ().

Equation (6) can be obtained by consider-
ing the “average” length of the lines of
magnetic field intensity surrounding the
central conductor of a strip line. The char-
acteristic impedance of a uniform transmis-
sion line operating in the transverse electro-
magnetic (TEM) mode can be determined by
first calculating the inductance per unit length
of the line L then applying the equation

(6)

Zy = ¢i'L )
where ¢’ is the velocity of a TEM wave in an
infinite medium of dielectric, relative permit-
tivity €.



